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Abstract. The pebbling number of a graph G, f(G), is the least m such that, however
m pebbles are placed on the vertices of G, we can move a pebble to any vertex by
a sequence of pebbling moves, each move taking two pebbles from one vertex and
placing one on an adjacent vertex. We say that G satisfies the 2- pebbling property
if for any distribution with more than 2f(G) − q pebbles, it is possible to move two
pebbles to any specified vertex. Graham conjectured that for all graphs G and H ,
f(G×H) ≤ f(G)f(H). Let ZZn(C2k) be the zig zag chain graph of n copies of even
cycles and let G be any graph with 2−pebbling property. We prove that f(ZZn(C2k)×
G) ≤ f(ZZn(C2k))f(G) for all n ≥ 2.
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1. INTRODUCTION

Throughout this paper, unless stated otherwise, G will denote a simple connected graph.
Suppose p pebbles are distributed onto the vertices of a graph G. A pebbling move consists of
removing two pebbles from some vertex and adding one on an adjacent vertex. we say a pebble
can be moved to a vertex v, the target vertex, if we can apply pebbling moves repeatedly so that
in the resulting distribution we can move a pebble to the vertex v. To understand the pebbling
concepts, we need the following definitions.

Definition 1.1. [1] [5] The pebbling number of a vertex v in G is the smallest number f(G, v)

such that every placement of f(G, v) pebbles, it is possible to move a pebble to v by a sequence
1
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of pebbling moves. Also, we define the t-pebbling number of v in G is the smallest number
ft(G, v) such that from every placement of ft(G, v) pebbles, it is possible to move t pebbles to
the vertex v.

The pebbling number of G and the t-pebbling number of G are the smallest numbers, f(G)

and ft(G), such that from any placement of f(G) pebbles or ft(G) pebbles, respectively, it is
possible to move one or t pebbles, respectively, to any target vertex by a sequence of pebbling
moves. Thus, f(G) and ft(G) are the maximum values of f(G, v) and ft(G, v) over all vertices
v.

(1) For any vertex v of a graph G, f(G, v) ≥ n where n = |V (G)|
(2) The pebbling number of a graph G satisfies f(G) ≥ max{2diam(G), |V (G)|}, where

diam(G) is the diameter of the graph G.

Definition 1.2. [1] [7] Let D be a distribution of pebbles on G, let q be the number of vertices
with at least one pebble. We say that G satisfies the 2- pebbling property if for any distribution
with more than 2f(G)− q pebbles, it is possible to move two pebbles to any specified vertex.

Further, we say that a graph G has the 2t-pebbling property, if for any distribution with more
than 2ft(G)− q pebbles, it is possible to move 2t pebbles to any specified vertex.

The Cartesian product of G and H is denoted by G×H . The following well-known conjec-
ture is first appeared in [1].

Conjecture 1.3. [1] For any connected graphs G and H , f(G×H) ≤ f(G)f(H).

Many articles (See, e.g.,[1],[2],[6] and [11]) have given evidence supporting Conjecture
1.3.In this paper we verified this conjecture is true for the product of zig-zag chain graph of
n copies of even cycles, ZZn(C2k) and the graph G with 2−pebbling property. Further, Lour-
dusamy extended Conjecture 1.3 as follows.

Conjecture 1.4. [7] For any connected graphs G and H , ft(G×H) ≤ ft(G)f(H)

This paper is organized as follows. In Section 2, we give some preliminary pebbling results
and definitions on zig-zag chain graph of n copies of even cycles. In section 3, we provide some
lemmas that will be used in the proof of main results. In Section 4, we verify that Graham’s
Conjecture is true for the Cartesian product of zig-zag chain graph of n copies of even cycles
and the graph G with 2-pebbling property.

2. PRELIMINARIES

Definition 2.1. [10] The zig-zag chain graph of n copies of even cycles denoted by ZZn(C2k),
is a graph which consists of zig-zag sequence of n even cycles, C2k with k ≥ 3. We have the
following vertex set and edge set of ZZn(C2k) for n even as follows.

V (ZZn(C2k)) = {ai, bi : 1 ≤ i ≤ n(k − 1)} ∪ {x, y} and

E(ZZn(C2k)) = {aiai+1, bibi+1 : 1 ≤ i ≤ n(k−1)−1}∪{xa1, xb1, yan(k−1), ybn(k−1)}∪
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{a(k+1)i−1b(k+1)i−2, a(k+1)jb(k+1)j+1 : 1 ≤ i ≤ n
2 , 1 ≤ j ≤ (n2 − 1)}

For n odd, we have the following vertex set and edge set.

V (ZZn(C2k)) = {ai, bi : 1 ≤ i ≤ n(k − 1)} ∪ {x, y} and

E(ZZn(C2k)) = {aiai+1, bibi+1 : 1 ≤ i ≤ n(k−1)−1}∪ {xa1, xb1, yan(k−1), ybn(k−1)}∪

{a(k+1)i−1b(k+1)i−2, a(k+1)jb(k+1)j+1 : 1 ≤ i, j ≤ n−1
2 }.

The reader can easily view that ZZn(C2k) has n copies of C2k, and label each cycle as
A1, A2, ..., and An in order. Here, we present some results that will be used in the proof of
main results.

Theorem 2.2. [7] Let Pn be the path with n vertices. Then
(1)ft(Pn) = t2n−1 and
(2)Pn satisfies the 2t- pebbling property.

Theorem 2.3. [8] [9] Let C2k denote a simple cycle with 2k vertices, where n ≥ 3. Then
(1)

ft(C2k) =


t2k, n is even

2k+2−(−1)k+2

3 + (t− 1)2k, n is odd.

(2) The graph C2k satisfies the 2t−pebbling property.

Theorem 2.4. [10] Let ZZn(C2k) be the zig-zag chain graph of n copies of even cycles. Then
we have ft(ZZn(C2k)) = t.2n(k−1).

Theorem 2.5. [7] Let Pn be the path with n vertices and let G be the graph with 2t−pebbling
property. We have ft(Pn ×G) ≤ ft(Pn)f(G).

Theorem 2.6. Let C2k be the cycle with 2k vertices and let G be the graph with 2t−pebbling
property. We have ft(C2k ×G) ≤ ft(C2k)f(G).

3. USEFUL LEMMAS

In this section, we provide some lemmas which will be used in main results.

Lemma 3.1. Let ZZ2(C2k) be the zig-zag chain graph of two copies of even cycles and let G
be the graph with 2−pebbling property. Suppose at least (22k−1−2k)f(G) pebbles distributed
only on the vertices of A1 ×G. Then we can move at least (2k−1 − 1) pebbles to {ak} ×G.

Proof. Consider the graph ZZ2(C2k) with at least (22k−1 − 2k)f(G) pebbles distributed only
on the vertices of A1 ×G. We have to move at least (2k−1 − 1) pebbles to {ak} ×G. Clearly,
A1 × G ∼= C2k × G and recall that ft(C2k × G) ≤ ft(C2k)f(G). Therefore we can move at
least (2k−1 − 1) pebbles to {ak} ×G. �
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Lemma 3.2. Let ZZ3(C2k) be the zig-zag chain graph of three copies of even cycles and let
G be the graph with 2−pebbling property. Suppose at least (23(k−1)+1 − 2k)f(G) pebbles
distributed only on the vertices of (A1 ∪ A2) × G. Then we can move at least (2k−1 − 1)

pebbles to {a2k−2} ×G.

Proof. Consider the graph ZZ3(C2k) with at least (23k−2 − 2k)f(G) pebbles distributed only
on the vertices of (A1∪A2)×G. We have to move at least (2k−1−1) pebbles to {a2k−2}×G.
Suppose at least (22k−1 − 2k)f(G) pebbles distributed on the vertices of A2 × G. Then by
Lemma 3.1, we can move at least (2k−1 − 1) pebbles to {a2k−2} × G. Therefore assume that
p(A2 × G) < (22k−1 − 2k)f(G). Then the number of pebbles retained on A1 × G is at least
(23k−2 − 22k−1)f(G). Then we claim the following:

Claim(1) : p(A1 ×G) ≥ 2k[2k−2(2k−1 − 1)]f(G)

We have, (23k−2 − 22k−1)f(G)− 2k[2k−2(2k−1 − 1)]f(G)

= (23k−2 − 22k−1 − 23k−3 + 22k−2)f(G)

= (23k−3 − 22k−2)f(G)

> 0, since k ≥ 3.

Hence we can move at least 2k−2(2k−1 − 1) pebbles to {ak} × G. Now, we have subgraph
A : {ak, ak+1, ..., a2k−2}f(G) ∼= Pk−1 × G. Then by Theorem 2.2, we can move at least
(2k−1 − 1) pebbles to {a2k−2} ×G. �
Lemma 3.3. Let ZZn(C2k) be the zig-zag chain graph of n copies of even cycles and let G
be the graph with 2−pebbling property. Suppose at least (2n(k−1)+1)f(G) pebbles distributed
only on the vertices of {A1 ∪ ... ∪ An−1} ×G. Then we can move at least (2k−1 − 1) pebbles
to {a(n−1)(k−1)} ×G.

Proof. We prove this lemma by induction. For n = 2 and n = 3, the results follow from
Lemma 3.1 and Lemma 3.2. Assume that the result is true for all n

′
< n. Consider the graph

ZZn(C2k) with at least (2n(k−1)+1)f(G) pebbles distributed only on the vertices of {A1∪ ...∪
An−1}×G. We have to move at least (2k−1−1) pebbles to {a(n−1)(k−1)}×G. Suppose at least
(2(n−1)(k−1)+1 − 2k)f(G) pebbles distributed on the vertices of (A2 ∪ ... ∪An−1)f(G). Then
by induction, we can move at least (2k−1 − 1) pebbles to {a2k−2} ×G. Therefore assume that
p((A2 ∪ ... ∪An−1)×G) < (2(n−1)(k−1)+1 − 2k)f(G). Then the number of pebbles retained
on A1 ×G is at least (2n(k−1)+1 − 2(n−1)(k−1)+1)f(G). We claim the following:

Claim(2) : p(A1 ×G) ≥ 2k[2n(k−1)−2k+1(2k−1 − 1)]f(G)

We have,
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(2n(k−1)+1 − 2(n−1)(k−1)+1)f(G)− 2k[2n(k−1)−2k+1(2k−1−1)]f(G)

= (2n(k−1)+1 − 2(n−1)(k−1)+1 − 2n(k−1)−k+1(2k−1−1))f(G)

= (2n(k−1)+1 − 2(n−1)(k−1)+1 − 2n(k−1) + 2n(k−1)−k+1)f(G)

= (2n(k−1) − 2n(k−1)−k)f(G)

> 0

Hence we can move at least 2n(k−1)−2k+1(2k−1 − 1) pebbles to {ak} × G. Now, we have
subgraph B : {ak, ..., a(n−1)(k−1)} × G ∼= Pn(k−1)−2k+2 × G. Then by Theorem 2.2, we can
move at least (2k−1 − 1) pebbles to {a(n−1)(k−1)} ×G. �

4. MAIN RESULTS:

In this section, we verify that Graham’s conjecture is true for the product of zig-zag chain
graph of n copies of even cycles and a graph G satisfies the 2−pebbling property.

Theorem 4.1. Let ZZ2(C2k) be the zig-zag chain graph of n copies of even cycles and let G
be the graph with 2−pebbling property. Then

f(ZZ2(C2k)×G) ≤ f(ZZ2(C2k))f(G).

Proof. Consider the graph ZZ2(C2k) × G with at least 22k−1f(G) pebbles distributed on its
vertices. Let (m,n) = v ∈ ZZ2(C2k) × G be out target vertex. Here, m ∈ ZZ2(C2k) and
n ∈ G. Let pm denote the number of pebbles placed on the vertices of {m} × G and let qm
denote the number of occupied vertices in {m} × G. Without loss of generality, assume that
v ∈ A2 ×G. We consider the following cases:

Case 1. Let v ∈ (V (A2)− {y, b2(k−1)} ×G)

Fix v = (ai, z), k ≤ i ≤ 2(k − 1). Clearly, A2 × G ∼= C2k × G. Suppose p(A2 × G) ≥
2kf(G).Then by Theorem2.3, we can reach the target. So assume that p(A2 × G) < 2kf(G).
Then the number of pebbles retained on A1 × G is at least (22k−1 − 2k)f(G). By Lemma
3.1, we can move at least (2k−1 − 1) pebbles to (ak, z) and by Theorem 2.2, we can move one
pebble to the target vertex.

Case 2. Let v ∈ {y, b2(k−1)} ×G

Without loss of generality, assume that v ∈ {y} × G. Fix v = (y, z). Now we have two
subgraphs I = {ak, ak+1, ..., y} × G and J = {bk, bk+1, ..., y} × G which are isomorphic to
Pk−1 × G. Suppose p(I) ≥ 2k−2f(G) or p(J) ≥ 2k−2f(G). Then we can reach the target.
Otherwise, assume that p(I) < 2k−2f(G) and p(J) < 2k−2f(G). Without loss of generality,
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assume that all the pebbles are distributed only on the vertices of A1 ×G. Then by Lemma 3.1,
we can move at least (2k−1−1) pebbles to the vertex (ak, z) by using exactly (22k−1−2k)f(G)

pebbles. But the number of pebbles retained on A1 × G is at least 2kf(G). Therefore, we can
move an additional pebble to the vertex (ak, z). Now by using the subgraph I , we can move a
pebble to the vertex (y, z). �

Theorem 4.2. Let ZZ3(C2k) be the zig-zag chain graph of three copies of even cycles and let
G be the graph with 2−pebbling property. Then

f(ZZ3(C2k)×G) ≤ f(ZZ3(C2k))f(G).

Proof. Consider the graph ZZ3(C2k)×G with at least 23k−2f(G) pebbles on the vertices. Let
v = (m,n) ∈ ZZ3(C2k) × G be our target vertex. Here, m ∈ ZZ3(C2k) and n ∈ G. Let pm
denote the number of pebbles in {m} × G and let qm denote the number of occupied vertices
in {m} ×G. Without loss of generality, assume that v ∈ At ×G, 1 ≤ t ≤ 3. We consider the
following cases:

Case 1. Let v ∈ A2 ×G.

Suppose p((A2 ∪ A3)×G) ≥ 22k−1f(G).Then the number of pebbles retained on A1 ×G

is at least 22k−1f(G). Therefore p((A1 ∪A2)×G) ≥ 22k−1f(G). Again by Theorem 4.1, we
can reach the target.

Case 2. Let v ∈ A1 ×G or v ∈ A3 ×G.

Without loss of generality, let us take v ∈ A3 × G and p(A3 × G) < 2kf(G). Then the
number of pebbles distributed on the vertices of (A1 ∪ A2) × G is at least (23k−2 − 2k)f(G).
We consider the following subcases:

Subcase 2(a). Let v ∈ (A3 − {y, a3(k−1)})×G

Without loss of generality, we assume that v = (a3(k−1), z). Since, we have at least (23k−2−
2k)f(G) pebbles on the vertices of (A1 ∪ A2) × G. By Lemma 3.2, we can move at least
(2k−1 − 1) pebbles to the vertex (a2(k−1), z). Then we can put one pebble to the target vertex
v = (a3(k−1), z).

Subcase 2(b). Let v ∈ {y, a3(k−1)} ×G.

Without loss of generality, assume that v ∈ {y} × G. Now we have two subgraphs K :

{ak, ..., y}×G and L : {bk, ..., y}×G which are isomorphic to P2(k−1)×G. Suppose p(K) ≥
22(k−2)f(G) or p(L) ≥ 22(k−2)f(G). Then we can reach the target. Otherwise, assume that
p(K) < 22(k−2)f(G) or p(L) < 22(k−2)f(G).Without loss of generality assume that all the
pebbles are distributed only on the vertices of A1 × G. Then by Lemma 3.2, we can move at
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least (2k−1 − 1) pebbles to the vertex (a2(k−1), z) by using exactly (23k−2 − 2k)f(G) pebbles.
But the number of pebbles retained on A1 × G is at least 2kf(G). Therefore we can move
an additional pebble to the vertex (a2(k−1), z). Now, by using the subgraph K we can move a
pebble to the vertex (y, z).

�
Theorem 4.3. Let ZZn(C2k) be the zig-zag chain graph of n copies of even cycles and let G
be the graph with 2−pebbling property. Then

f(ZZn(C2k)×G) ≤ f(ZZn(C2k))f(G).

Proof. We prove this theorem by induction on n. For n = 2 and n = 3, the result follows from
Theorem 4.1 and Theorem 4.2. Assume that the result is true for all n

′
< n. Consider the graph

ZZn(C2k) with at least (2n(k−1)+1)f(G) pebbles on its vertices. Let v ∈ At ×G, 1 ≤ t ≤ n.
We consider the following cases:

Case 1. Let v ∈ At ×G, 1 < t < n.

The graph ZZn(C2k) × G can be partitioned into two subgraphs say, S1 and S2, where
S1

∼= ZZp(C2k) × G and S2
∼= ZZs(C2k) × G. Here, n = s + p − 1. Clearly, S1 ∩

S2
∼= At × G. Suppose p(S1) ≥ 2p(k−1)+1f(G).Then we are done. Therefore assume that

p(S1) < 2p(k−1)+1f(G). Then the number of pebbles retained on S2 is at least 2s(k−1)+1f(G)

which implies p(S2) ≥ 2s(k−1)+1f(G). Then by induction we can reach the target vertex.

Case 2. Let v ∈ A1 ×GorAn ×G.

Without loss of generality, assume that v ∈ An × G and p(An × G) < 2kf(G). Then the
number of pebbles retained on (A1 ∪ ... ∪ An−1) × G is at least (2n(k−1)+1 − 2k)f(G). We
consider the following subcases:

Subcase 2(a). Let v ∈ {V (An)− {y, bn(k−1)}} ×G.
Let us take v = (an(k−1), z). Since p(A1 ∪ ... ∪ An−1) ≥ (2n(k−1)+1 − 2k)f(G). Then by
Lemma 3.3, we can move at least (2k−1− 1) pebbles to {a(n−1)(k−1)}×G. Then we can reach
the target.

Subcase 2(b). Let v ∈ {y, bn(k−1)} ×G.
Without loss of generality, assume that v = (y, z). We have two subgraphs say, X : {ak, ..., an(k−1)}×
G and Y : {bk, ..., bn(k−1)} × G. Suppose p(X) ≥ 2n(k−1)−k+1 and p(Y ) ≥ 2n(k−1)−k+1.
Then we can move a pebble to the target vertex. Therefore assume that p(X) < 2n(k−1)−k+1

and p(Y ) < 2n(k−1)−k+1. Without loss of generality, assume that all the pebbles are distributed
only on the vertices of A1 ×G. Then by Lemma 3.3, we can move at least (2(n−1)k−n+1 − 1)

pebbles to (ak, z) by using exactly 2k(2(n−1)k−n+1 − 1)f(G) pebbles. Now, we have at least
2kf(G) pebbles retained on A1 ×G. By using Theorem 2.6 we can move additional pebble to
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the vertex (ak, z). Then by Theorem 2.2, we can move one pebble to the vertex (y, z) through
the subgraph X . �
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